4734 Mark Scheme June 2009

4734 Probability & Statistics 3

Penalise 2 sf instead of 3 once only. Penalise final answer \geq 6 sf once only.

_			1	,	
1	(i)	$\int_{0}^{1} \frac{2}{5} x^{2} dx + \int_{1}^{4} \frac{2}{5} \sqrt{x} dx$	M1		Attempt to integrate $xf(x)$, both parts added, limits
		$= \left[\frac{2x^3}{15} \right]_0^1 + \left[\frac{4x^{3/2}}{15} \right]_0^4 = 2$	A1		Correct indefinite integrals
			A1	3	Correct answer
	(ii)	$\int_{2}^{4} \frac{2}{5\sqrt{x}} dx = \left[\frac{4\sqrt{x}}{5} \right]^{4} = \frac{4}{5} (2 - \sqrt{2}) \text{ or } 0.4686$	M1		Attempt correct integral, limits; needs "1 –" if μ < 1
		$\begin{bmatrix} J_2 5\sqrt{x} & 5 \end{bmatrix}_2 = 5$	A1 A1	3	Correct indefinite integral, $$ on their μ
			AI	3	Exact aef, or in range [0.468, 0.469]
2	(i)	Po(0.5), Po(0.75) Po(0.7) and Po(0.9)	M1 A1		0.5, 0.75 scaled These
		$A + B \sim Po(1.6)$	M1		Sum of Poissons used, can have wrong
		$P(A + B \ge 5) = 0.0237$	A1		parameters 0.0237 from tables or calculator
		B(20, 0.0237)	M1		Binomial (20, their p), soi
		$0.9763^{20} + 20 \times 0.9763^{19} \times 0.0237$	A1√	7	Correct expression, their <i>p</i> Answer in range [0.919, 0.92]
		= 0.9195	A1	7	Answer in range [0.919, 0.92]
	(ii)	Bacteria should be independent in drugs; <i>or</i> sample should be random	B1	1	Any valid relevant comment, must be contextualised
		or sample should be random			Contextualised
3	(i)	Sample mean = 6.486 $s^2 = 0.00073$	B1 B1		0.000584 if divided by 5
		$6.486 \pm 2.776 \times \sqrt{\frac{0.00073}{5}}$	M1		Calculate sample mean $\pm ts/\sqrt{5}$, allow 1.96, s^2
		·	B1		etc $t = 2.776$ seen
		(6.45, 6.52)	A1A1	6	Each answer, cwo (6.45246, 6.5195)
	(ii)	$2\pi \times \text{above}$ [= (40.5, 41.0)]	M1	1	
4	(i)	H_0 : $p_1 = p_2$; H_1 : $p_1 \neq p_2$, where p_i is the proportion of all solvers of puzzle i	B1		Both hypotheses correctly stated, allow eg \hat{p}
		Common proportion 39/80	M1A	1	[= 0.4875]
		$s^2 = 0.4875 \times 0.5125 / 20$	B1 M1		$[=0.01249, \sigma = 0.11176]$ (0.6-0.375)/s
		$(\pm)\frac{0.6-0.375}{0.1117} = (\pm)2.013$	A1√		Allow $2.066\sqrt{\text{ from unpooled variance, } p} =$
					0.0195
		2.013 > 1.96, or $0.022 < 0.025Reject H0. Significant evidence that there$	M1		Correct method and comparison with 1.96 or 0.025, allow unpooled, 1.645 from 1-tailed
		is a difference in standard of difficulty			only
			A1√	8	Conclusion, contextualised, not too assertive
	(ii)	One-tail test used	M1		One-tailed test stated or implied by
		Smallest significance level 2.2(1)%	A1	2	Φ("2.013"), OK if off-scale; allow 0.022(1)

4734 Mark Scheme June 2009

5	(i)	Numbers of men and women should have normal dists; with equal variance; distributions should be independent	B1 B1 B1 3	Context & 3 points: 2 of these, B1; 3, B2; 4, B3. [Summary data: 14.73
	(ii)	H ₀ : $\mu_M = \mu_W$; H ₁ : $\mu_M \neq \mu_W$ $3992 - \frac{221^2}{15} + 5538 - \frac{276^2}{17} \approx 1793$	B1 M1 A1	Both hypotheses correctly stated Attempt at this expression (see above) Either 1793 or 30
		$1793/(14+16) = 59.766$ $(\pm) \frac{221/15 - 276/17}{\sqrt{59.766(\frac{1}{15} + \frac{1}{17})}} = (-)0.548$	A1 M1 A1√	Variance estimate in range [59.7, 59.8] (or $\sqrt{}$ = 7.73) Standardise, allow wrong (but not missing) $1/n$ Correct formula, allow $s^2(\frac{1}{15} + \frac{1}{17})$ or $(\frac{s_1^2}{15} + \frac{s_2^2}{17})$,
		Critical region: $ t \ge 2.042$ Do not reject H ₀ . Insufficient evidence of a difference in mean number of days	A1 B1 M1 A1√10	allow 14 & 16 in place of 15, 17; 0.548 or – 0.548 2.042 seen Correct method and comparison type, must be <i>t</i> , allow 1-tail; conclusion, in context, not too assertive
	(iii)	Eg Samples not indep't so test invalid	B1 1	Any relevant valid comment, eg "not representative"

4734 Mark Scheme June 2009

6	(i)	$F(0) = 0, F(\pi/2) = 1$ Increasing	B1 B1 2	Consider both end-points Consider F between end-points, can be asserted
	(ii)	$\sin^4(Q_1) = \frac{1}{4}$ $\sin(Q_1) = \frac{1}{\sqrt{2}}$ $Q_1 = \frac{\pi}{4}$	M1 A1 A1 3	Can be implied. Allow decimal approximations Or 0.785(4)
	(iii)	$G(y) = P(Y \le y) = P(T \le \sin^{-1} y)$ $= F(\sin^{-1} y)$ $= y^{4}$ $g(y) = \begin{cases} 4y^{3} & 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$	M1 A1 A1 M1 A1 5	Ignore other ranges Differentiate G(y) Function and range stated, allow if range given in G
	(iv)	$\int_{0}^{1} \frac{4}{1+2y} dy = \left[2 \ln(1+2y) \right]_{0}^{1}$ $= 2 \ln 3$	M1 A1 A1 3	Attempt $\int \frac{g(y)}{y^3 + 2y^4} dy$; $\int_0^1 \frac{4}{1 + 2y} dy$ Or 2.2, 2.197 or better
7	(i) α	$\Phi\left(\frac{8.084 - 8.592}{0.7534}\right) = \Phi(-0.674) = 0.25$ $\Phi(0) - \Phi(above) = 0.25$ $P(8.592 \le X \le 9.1) = \text{same by symmetry}$	M1 A1 A1 A1 A1	Standardise once, allow $$ confusions, ignore sign Obtain 0.25 for one interval For a second interval, justified, eg using $\Phi(0) = 0.5$ For a third, justified, eg "by symmetry"
	or β	$\frac{x - 8.592}{0.7534} = 0.674$ $x = 8.592 \pm 0.674 \times 0.7534$ $= (8.084, 9.100)$	M1A1 A1A1	[from probabilities to ranges] A1 for art 0.674
	(ii)	H ₀ : normal distribution fits data All E values $50/4 = 12.5$ $X^2 = \frac{4.5^2 + 9.5^2 + 1.5^2 + 3.5^2}{12.5} = 10$ 10 > 7.8794 Reject H ₀ . Significant evidence that normal distribution is not a good fit.	B1 B1 M1 A1 B1 M1	Not N(8.592, 0.7534). Allow "it's normally distributed" [Yates: 8.56: A0] CV 7.8794 seen Correct method, incl. formula for χ² and comparison, allow wrong ν Conclusion, in context, not too assertive
	(iv)	$8.592 \pm 2.576 \times \frac{0.7534}{\sqrt{49}}$ $(8.315, 8.869)$	M1 A1	Allow $\sqrt{\text{errors}}$, wrong σ or z , allow 50 Correct, including $z = 2.576$ or $t_{49} = 2.680$, not 50 In range [8.31, 8.32] and in range (8.86, 8.87], even from 50, or (8.306, 8.878) from t_{49}
1				