4734 Probability \& Statistics 3

Penalise 2 sf instead of 3 once only. Penalise final answer ≥ 6 sf once only.

1 (i)	$\begin{aligned} & \int_{0}^{1} \frac{2}{5} x^{2} d x+\int_{1}^{4} \frac{2}{5} \sqrt{x} d x \\ & =\left[\frac{2 x^{3}}{15}\right]_{0}^{1}+\left[\frac{4 x^{3 / 2}}{15}\right]_{1}^{4}=2 \end{aligned}$	M1 A1 A1 3	Attempt to integrate $\operatorname{xf}(x)$, both parts added, limits Correct indefinite integrals Correct answer
(ii)	$\int_{2}^{4} \frac{2}{5 \sqrt{x}} \mathrm{~d} x=\left[\frac{4 \sqrt{x}}{5}\right]_{2}^{4}=\frac{4}{5}(2-\sqrt{2})$ or 0.4686	M1 A1 A1 3	Attempt correct integral, imits; needs " 1 -". if $\mu<1$ Correct indefinite integral, $\sqrt{ }$ on their μ Exact aef, or in range [0.468, 0.469]
2 (i)	$\begin{aligned} & \hline \operatorname{Po}(0.5), \operatorname{Po}(0.75) \\ & \mathrm{Po}(0.7) \text { and } \operatorname{Po}(0.9) \\ & A+B \sim \operatorname{Po}(1.6) \\ & \\ & \mathrm{P}(A+B \geq 5)=0.0237 \\ & \mathrm{~B}(20,0.0237) \\ & 0.9763^{20}+20 \times 0.9763^{19} \times 0.0237 \\ & \quad=\mathbf{0 . 9 1 9 5} \end{aligned}$	M1 A1 M1 A1 M1 A1 $\sqrt{ }$ A1 7	0.5, 0.75 scaled These Sum of Poissons used, can have wrong parameters 0.0237 from tables or calculator Binomial (20, their p), soi Correct expression, their p Answer in range [0.919, 0.92$]$
(ii)	Bacteria should be independent in drugs; or sample should be random	B1 1	Any valid relevant comment, must be contextualised
3 (i)	$\begin{aligned} & \begin{array}{l} \text { Sample mean }=6.486 \\ s^{2}=0.00073 \\ 6.486 \pm 2.776 \times \sqrt{\frac{0.00073}{5}} \\ \\ (\mathbf{6 . 4 5 , 6 . 5 2)} \end{array} \end{aligned}$	B1 B1 M1 B1 A1A1 6	0.000584 if divided by 5 Calculate sample mean $\pm t s / \sqrt{ }$, allow $1.96, s^{2}$ etc $t=2.776 \text { seen }$ Each answer, cwo (6.45246, 6.5195)
(ii)	$2 \pi \times$ above $\quad[=(40.5,41.0)]$	M1 $\mathbf{1}$	
4 (i)	$\mathrm{H}_{0}: p_{1}=p_{2} ; \mathrm{H}_{1}: p_{1} \neq p_{2}$, where p_{i} is the proportion of all solvers of puzzle i Common proportion 39/80 $s^{2}=0.4875 \times 0.5125 / 20$ $(\pm) \frac{0.6-0.375}{0.1117}=(\pm) 2.013$ $2.013>1.96 \text {, or } 0.022<0.025$ Reject H_{0}. Significant evidence that there is a difference in standard of difficulty	B1 M1A1 B1 M1 A1 $\sqrt{ }$ M1 $\mathrm{A} 1 \sqrt{ } 8$	Both hypotheses correctly stated, allow eg \hat{p} $\begin{aligned} & {[=0.4875]} \\ & {[=0.01249, \sigma=0.11176]} \\ & (0.6-0.375) / s \end{aligned}$ Allow $2.066 \checkmark$ from unpooled variance, $p=$ 0.0195 Correct method and comparison with 1.96 or 0.025 , allow unpooled, 1.645 from 1-tailed only Conclusion, contextualised, not too assertive
(ii)	One-tail test used Smallest significance level 2.2(1)\%	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & 2 \end{array}$	One-tailed test stated or implied by $\Phi(" 2.013$ "), OK if off-scale; allow 0.022(1)

(i)	Numbers of men and women should have normal dists; with equal variance; distributions should be independent	$\begin{array}{ll\|} \hline \text { B1 } & \\ & \\ \text { B1 } & \\ \text { B1 } & 3 \end{array}$	Context \& 3 points: 2 of these, B1; 3, B2; 4, B3. [Summary data: 14.73 49.06 $\begin{array}{lll}52.57 \\ 16.24 & 62.18 & 66.07]\end{array}$
(ii)	$\begin{aligned} & \mathrm{H}_{0}: \mu_{M}=\mu_{W} ; \quad \mathrm{H}_{1}: \mu_{M} \neq \mu_{W} \\ & 3992-\frac{221^{2}}{15}+5538-\frac{276^{2}}{17}[\approx 1793] \\ & 1793 /(14+16)=59.766 \end{aligned}$ $(\pm) \frac{221 / 15-276 / 17}{\sqrt{59.766\left(\frac{1}{15}+\frac{1}{17}\right)}}=(-) 0.548$ Critical region: $\|t\| \geq 2.042$ Do not reject H_{0}. Insufficient evidence of a difference in mean number of days	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \sqrt{ } \\ & \text { A1 } \\ & \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \sqrt{10} \end{aligned}$	Both hypotheses correctly stated Attempt at this expression (see above) Either 1793 or 30 Variance estimate in range [59.7, 59.8] (or $\sqrt{ }$ = 7.73) Standardise, allow wrong (but not missing) 1/n Correct formula, allow $s^{2}\left(\frac{1}{15}+\frac{1}{17}\right)$ or $\left(\frac{s_{5}^{2}}{15}+\frac{s_{5}^{2}}{17}\right)$, allow 14 \& 16 in place of 15,$17 ; 0.548$ or 0.548 2.042 seen Correct method and comparison type, must be t, allow 1-tail; conclusion, in context, not too assertive
(iii)	Eg Samples not indep't so test invalid	B1 1	Any relevant valid comment, eg "not representative"

6 (i)	$F(0)=0, F(\pi / 2)=1$ Increasing	$\begin{array}{ll} \hline \text { B1 } & \\ \text { B1 } & 2 \end{array}$	Consider both end-points Consider F between end-points, can be asserted
(ii)	$\begin{aligned} & \begin{array}{l} \sin ^{4}\left(Q_{1}\right)=1 / 4 \\ \sin \left(Q_{1}\right)=1 / \sqrt{ } 2 \end{array} \\ & Q_{1}=\pi / 4 \end{aligned}$	$\begin{array}{\|ll} \hline \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & 3 \end{array}$	Can be implied. Allow decimal approximations Or 0.785(4)
(iii)	$\begin{aligned} \mathrm{G}(y) \quad & =\mathrm{P}(Y \leq y) \\ & =\mathrm{F}\left(\sin ^{-1} y\right) \\ & =y^{4}\left(T \leq \sin ^{-1} y\right) \\ g(y)= & = \begin{cases}4 y^{3} & 0 \leq y \leq 1 \\ 0 & \text { otherwise }\end{cases} \end{aligned}$	$\begin{array}{\|lr} \hline \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & 5 \end{array}$	Ignore other ranges Differentiate G(y) Function and range stated, allow if range given in G
(iv)	$\begin{array}{r} \int_{0}^{1} \frac{4}{1+2 y} \mathrm{~d} y=[2 \ln (1+2 y)]_{0}^{1} \\ =\mathbf{2} \ln \mathbf{3} \end{array}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & 3 \end{array}$	Attempt $\int \frac{g(y)}{y^{3}+2 y^{4}} \mathrm{~d} y ; \int_{0}^{1} \frac{4}{1+2 y} \mathrm{~d} y$ Or 2.2, 2.197 or better
$\begin{array}{cc}7 & \text { (i) } \\ \\ & \alpha\end{array}$	$\begin{aligned} & \Phi\left(\frac{8.084-8.592}{0.7534}\right)=\Phi(-0.674)=0.25 \\ & \Phi(0)-\Phi(\text { above })=0.25 \\ & \mathrm{P}(8.592 \leq X \leq 9.1)=\text { same by symmetry } \end{aligned}$	$\begin{array}{\|ll} \hline \text { M1 } & \\ & \\ \text { A1 } & \\ \text { A1 } & \\ & \\ \text { A1 } & 4 \end{array}$	Standardise once, allow $\sqrt{ }$ confusions, ignore sign Obtain 0.25 for one interval For a second interval, justified, eg using $\Phi(0)=0.5$ For a third, justified, eg "by symmetry"
$\begin{aligned} & \text { or } \\ & \beta \end{aligned}$	$\begin{aligned} & \frac{x-8.592}{0.7534}=0.674 \\ & x=8.592 \pm 0.674 \times 0.7534 \\ & \\ & \quad=(8.084,9.100) \end{aligned}$	M1A1 A1A1	[from probabilities to ranges] A1 for art 0.674
(ii)	H_{0} : normal distribution fits data All E values 50/4 = 12.5 $\begin{aligned} & X^{2}=\frac{4.5^{2}+9.5^{2}+1.5^{2}+3.5^{2}}{12.5}=10 \\ & 10>7.8794 \end{aligned}$ Reject H_{0}. Significant evidence that normal distribution is not a good fit.	B1 B1 M1 A1 B1 M1 A1 $\sqrt{ } 7$	Not $\mathrm{N}(8.592,0.7534)$. Allow "it's normally distributed" [Yates: 8.56: A0] CV 7.8794 seen Correct method, incl. formula for χ^{2} and comparison, allow wrong v Conclusion, in context, not too assertive
(iv)	$\begin{aligned} & 8.592 \pm 2.576 \times \frac{0.7534}{\sqrt{49}} \\ & (8.315,8.869) \end{aligned}$	$\begin{array}{ll} \hline \text { M1 } & \\ \text { A1 } & \\ \text { A1 } & 3 \end{array}$	Allow $\sqrt{ }$ errors, wrong σ or z, allow 50 Correct, including $z=2.576$ or $t_{49}=2.680$, not 50 In range [8.31, 8.32] and in range (8.86, 8.87], even from 50 , or $(8.306,8.878)$ from t_{49}

